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Introduction

Big Ideas

I Di↵erential geometry is concerned with those properties of surfaces
which depend on their behavior in a neighborhood of a point.

I According to our definition, each point p of a regular surface
belongs to a coordinate neighborhood.

I The points of such a neighborhood are characterized by their
coordinates, and we should be able, therefore, to define the local
properties which interest us in terms of these coordinates.

I For example, it is important that we be able to define what it means
for a function f : S ! R to be di↵erentiable at a point p of a
regular surface S .
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Di↵erentiability

Potential Problems with Parametrizations

I A natural way to proceed is to choose a coordinate neighborhood of
p, with coordinates u, v , and say that f is di↵erentiable at p if its
expression in the coordinates u and v admits continuous partial
derivatives of all orders.

I However, the same point of S can belong to various coordinate
neighborhoods (in the sphere example, any point of the interior of
the first octant belongs to three of the six given coordinate
systems).

I For the above definition to make sense, it is necessary that it does
not depend on the chosen system of coordinates. In other words, it
must be shown that when p belongs to two coordinate
neighborhoods, with parameters (u, v) and (⇠, ⌘), it is possible to
pass from one of these pairs of coordinates to the other by means of
a di↵erentiable transformation.
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Change of Parameters

Proposition (⇤)
Let p be a point of a regular surface S, and let x : U ⇢ R2 ! S,

y : V ⇢ R2 ! S be two parametrizations of S such that

p 2 x(U) \ y(V ) = W. Then the “change of coordinates”

h = x

�1 � y : y

�1(W ) ! x

�1(W ) is a di↵eomorphism; that is, h is

di↵erentiable and has a di↵erentiable inverse h

�1

.
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Di↵erentiable Functions on a Surface

Definition

Let f : V ⇢ S ! R be a function defined in an open subset V of a
regular surface S . Then f is said to be di↵erentiable at p 2 V if, for
some parametrization x : U ⇢ R2 ! S with p 2 x(U) ⇢ V , the
composition f � x : U ⇢ R2 ! R is di↵erentiable at x

�1(p). f is
di↵erentiable in V if it is di↵erentiable at all points of V .

It follows immediately from the last proposition that the definition given
does not depend on the choice of the parametrization x.

Remark

We shall frequently make the notational abuse of indicating f and f � x

by the same symbol f (u, v), and say that f (u, v) is the expression of f in
the system of coordinates x. This is equivalent to identifying x(U) with
U and thinking of (u, v), indi↵erently, as a point of U and as a point of
x(U) with coordinates (u, v). From now on, abuses of language of this
type will be used without further comment.
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Examples

Example

Let S be a regular surface and V ⇢ R3 be an open set such that S ⇢ V .
Let f : V ⇢ R3 ! R be a di↵erentiable function. Then the restriction of
f to S is a di↵erentiable function on S . In fact, for any p 2 S and any
parametrization x : U ⇢ R2 ! S in p, the function f � x : U ! R is
di↵erentiable.

In particular, the following are di↵erentiable functions:

1. The height function relative to a unit vector v 2 R3, h : S ! R,
given by h(p) = p · v , p 2 S , where the dot denotes the usual inner
product in R3. h(p) is the heigh of p 2 S relative to a plane normal
to v and passing through the origin of R3.

2. The square of the distance from a fixed point p

0

2 R3,
f (p) = |p� p

0

|2, p 2 S . The need for taking the square comes from
the fact that the distance |p � p

0

| is not di↵erentiable at p = p

0

.
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Di↵erentiable Functions Between Surfaces

The definition of di↵erentiability can be easily extended to mappings
between surfaces. A continuous map ' : V

1

⇢ S

1

! S

2

of an open set V

1

of a regular surface S

1

to a regular surface S

2

is said to be di↵erentiable

at p 2 V if, given parametrizations

x
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: U

1

⇢ R2 ! S

1

, x
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: U

2

⇢ R2 ! S

2

,

with p 2 x

1

(U) and '(x
1
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2

(U
2

), the map

x

�1

2

� ' � x

1

: U

1

! U

2

is di↵erentiable at q = x

�1

1

(p).

I In other words, ' is di↵erentiable if when expressed in local
coordinates as '(u

1

, v
1

) = ('
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1
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2

have continuous partial derivatives of all orders.
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Facts and Remarks

Remark

The proof of Proposition (⇤) makes essential use of the fact that the
inverse of a parametrization is continuous. Since we need (⇤) to be able
to define di↵erentiable functions on surfaces (a vital concept), we cannot
dispose of this condition in the definition of a regular surface.

Fact (Very Useful Fact)

U and x(U) are di↵eomorphic (i.e., every regular surface is locally

di↵eomorphic to a plane) and justifies the identification made above.

This is equivalent to:

Fact

If x : U ⇢ R2 ! S is a parametrization, x

�1 : x(U) ! R2

is di↵erentiable.

Remark

Proposition (⇤) implies that a parametrization x : U ⇢ R2 ! S is a
di↵eomorphism of U onto x(U). Actually, we can now characterize the
regular surfaces as those subsets S ⇢ R3 which are locally di↵eomorphic
to R2; that is, for each point p 2 S , there exists a neighborhood V of p

in S , an open set U ⇢ R2, and a map x : U ! V , which is a
di↵eomorphism.
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An Example

Example

Let S

1

and S

2

be regular surfaces. Assume that S

1

⇢ V ⇢ R3, where V is
an open set of R3, and that ' : V ! R3 is a di↵erentiable map such that
'(S

1

) ⇢ S

2

. Then the restriction '|S
1

: S

1

! S

2

is a di↵erentiable map.

The following are particular cases of this general example:

1. Let S be symmetric relative to the xy plane; that is, if (x , y , z) 2 S ,
then also (x , y ,�z) 2 S . Then the map � : S ! S , which takes
p 2 S into its symmetrical point, is di↵erentiable, since it is the
restriction to S of � : R3 ! R3, �(x , y , z) = (x , y ,�z). This, of
course, generalizes to surfaces symmetric relative to any plane of R3.

2. Let Rz,✓ : R3 ! R3 be the rotation of angle ✓ about the z axis, and
let S ⇢ R3 be a regular surface invariant by this rotation; i.e., if
p 2 S , Rz,✓(p) 2 S . Then the restriction Rz,✓ : S ! S is a
di↵erentiable map.
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Di↵eomorphisms

Definition

I The natural notion of equivalence associated with di↵erentiability is
the di↵eomorphism.

I Two regular surfaces S

1

and S

2

are di↵eomorphic if there exists a
di↵erentiable map ' : S

1

! S

2

with a di↵erentiable inverse
'�1 : S

2

! S

1

. Such a ' is called a di↵eomorphism from S

1

to S

2

.

I A mapping ' : U ⇢ S

1

! S

2

is a local di↵eomorphism at p 2 U if
there exists a neighborhood V ⇢ U of p such that ' restricted to V

is a di↵eomorphism onto an open set '(V ) ⇢ S

2

.
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Show that the sphere
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are di↵eomorphic.




