Lecture 7: Change of Parameters: Differentiable Functions on Surfaces

Prof. Weiqing Gu

Math 142: Differential Geometry

Big Ideas

▶ Differential geometry is concerned with those properties of surfaces which depend on their behavior in a neighborhood of a point.

Big Ideas

- ▶ Differential geometry is concerned with those properties of surfaces which depend on their behavior in a neighborhood of a point.
- ▶ According to our definition, each point *p* of a regular surface belongs to a coordinate neighborhood.

Big Ideas

- ▶ Differential geometry is concerned with those properties of surfaces which depend on their behavior in a neighborhood of a point.
- ▶ According to our definition, each point *p* of a regular surface belongs to a coordinate neighborhood.
- ▶ The points of such a neighborhood are characterized by their coordinates, and we should be able, therefore, to define the local properties which interest us in terms of these coordinates.

Big Ideas

- ▶ Differential geometry is concerned with those properties of surfaces which depend on their behavior in a neighborhood of a point.
- ▶ According to our definition, each point *p* of a regular surface belongs to a coordinate neighborhood.
- ▶ The points of such a neighborhood are characterized by their coordinates, and we should be able, therefore, to define the local properties which interest us in terms of these coordinates.
- ▶ For example, it is important that we be able to define what it means for a function $f: S \to \mathbb{R}$ to be differentiable at a point p of a regular surface S.

Differentiability

Potential Problems with Parametrizations

▶ A natural way to proceed is to choose a coordinate neighborhood of *p*, with coordinates *u*, *v*, and say that *f* is differentiable at *p* if its expression in the coordinates *u* and *v* admits continuous partial derivatives of all orders.

Differentiability

Potential Problems with Parametrizations

- ▶ A natural way to proceed is to choose a coordinate neighborhood of p, with coordinates u, v, and say that f is differentiable at p if its expression in the coordinates u and v admits continuous partial derivatives of all orders.
- ▶ However, the same point of *S* can belong to various coordinate neighborhoods (in the sphere example, any point of the interior of the first octant belongs to three of the six given coordinate systems).

Differentiability

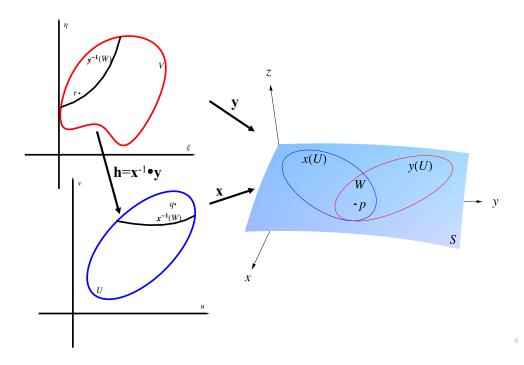
Potential Problems with Parametrizations

- ▶ A natural way to proceed is to choose a coordinate neighborhood of p, with coordinates u, v, and say that f is differentiable at p if its expression in the coordinates u and v admits continuous partial derivatives of all orders.
- ▶ However, the same point of *S* can belong to various coordinate neighborhoods (in the sphere example, any point of the interior of the first octant belongs to three of the six given coordinate systems).
- For the above definition to make sense, it is necessary that it does not depend on the chosen system of coordinates. In other words, it must be shown that when p belongs to two coordinate neighborhoods, with parameters (u, v) and (ξ, η) , it is possible to pass from one of these pairs of coordinates to the other by means of a differentiable transformation.

Change of Parameters

Proposition (*)

Let p be a point of a regular surface S, and let $\mathbf{x}: U \subset \mathbb{R}^2 \to S$, $\mathbf{y}: V \subset \mathbb{R}^2 \to S$ be two parametrizations of S such that $p \in \mathbf{x}(U) \cap \mathbf{y}(V) = W$. Then the "change of coordinates" $h = \mathbf{x}^{-1} \circ \mathbf{y}: \mathbf{y}^{-1}(W) \to \mathbf{x}^{-1}(W)$ is a diffeomorphism; that is, h is differentiable and has a differentiable inverse h^{-1} .



Differentiable Functions on a Surface

Definition

Let $f: V \subset S \to \mathbb{R}$ be a function defined in an open subset V of a regular surface S. Then f is said to be differentiable at $p \in V$ if, for some parametrization $\mathbf{x}: U \subset \mathbb{R}^2 \to S$ with $p \in \mathbf{x}(U) \subset V$, the composition $f \circ \mathbf{x}: U \subset \mathbb{R}^2 \to \mathbb{R}$ is differentiable at $\mathbf{x}^{-1}(p)$. f is differentiable in V if it is differentiable at all points of V.

Differentiable Functions on a Surface

Definition

Let $f: V \subset S \to \mathbb{R}$ be a function defined in an open subset V of a regular surface S. Then f is said to be differentiable at $p \in V$ if, for some parametrization $\mathbf{x}: U \subset \mathbb{R}^2 \to S$ with $p \in \mathbf{x}(U) \subset V$, the composition $f \circ \mathbf{x}: U \subset \mathbb{R}^2 \to \mathbb{R}$ is differentiable at $\mathbf{x}^{-1}(p)$. f is differentiable in V if it is differentiable at all points of V.

It follows immediately from the last proposition that the definition given does not depend on the choice of the parametrization \mathbf{x} .

Differentiable Functions on a Surface

Definition

Let $f: V \subset S \to \mathbb{R}$ be a function defined in an open subset V of a regular surface S. Then f is said to be differentiable at $p \in V$ if, for some parametrization $\mathbf{x}: U \subset \mathbb{R}^2 \to S$ with $p \in \mathbf{x}(U) \subset V$, the composition $f \circ \mathbf{x}: U \subset \mathbb{R}^2 \to \mathbb{R}$ is differentiable at $\mathbf{x}^{-1}(p)$. f is differentiable in V if it is differentiable at all points of V.

It follows immediately from the last proposition that the definition given does not depend on the choice of the parametrization \mathbf{x} .

Remark

We shall frequently make the notational abuse of indicating f and $f \circ \mathbf{x}$ by the same symbol f(u, v), and say that f(u, v) is the expression of f in the system of coordinates \mathbf{x} . This is equivalent to identifying $\mathbf{x}(U)$ with U and thinking of (u, v), indifferently, as a point of U and as a point of $\mathbf{x}(U)$ with coordinates (u, v). From now on, abuses of language of this type will be used without further comment.

Example

Let S be a regular surface and $V \subset \mathbb{R}^3$ be an open set such that $S \subset V$. Let $f: V \subset \mathbb{R}^3 \to \mathbb{R}$ be a differentiable function. Then the restriction of f to S is a differentiable function on S. In fact, for any $p \in S$ and any parametrization $\mathbf{x}: U \subset \mathbb{R}^2 \to S$ in p, the function $f \circ \mathbf{x}: U \to \mathbb{R}$ is differentiable.

Example

Let S be a regular surface and $V \subset \mathbb{R}^3$ be an open set such that $S \subset V$. Let $f: V \subset \mathbb{R}^3 \to \mathbb{R}$ be a differentiable function. Then the restriction of f to S is a differentiable function on S. In fact, for any $p \in S$ and any parametrization $\mathbf{x}: U \subset \mathbb{R}^2 \to S$ in p, the function $f \circ \mathbf{x}: U \to \mathbb{R}$ is differentiable. In particular, the following are differentiable functions:

Example

Let S be a regular surface and $V \subset \mathbb{R}^3$ be an open set such that $S \subset V$. Let $f: V \subset \mathbb{R}^3 \to \mathbb{R}$ be a differentiable function. Then the restriction of f to S is a differentiable function on S. In fact, for any $p \in S$ and any parametrization $\mathbf{x}: U \subset \mathbb{R}^2 \to S$ in p, the function $f \circ \mathbf{x}: U \to \mathbb{R}$ is differentiable. In particular, the following are differentiable functions:

1. The *height function* relative to a unit vector $v \in \mathbb{R}^3$, $h: S \to \mathbb{R}$, given by $h(p) = p \cdot v$, $p \in S$, where the dot denotes the usual inner product in \mathbb{R}^3 . h(p) is the heigh of $p \in S$ relative to a plane normal to v and passing through the origin of \mathbb{R}^3 .

Example

Let S be a regular surface and $V \subset \mathbb{R}^3$ be an open set such that $S \subset V$. Let $f: V \subset \mathbb{R}^3 \to \mathbb{R}$ be a differentiable function. Then the restriction of f to S is a differentiable function on S. In fact, for any $p \in S$ and any parametrization $\mathbf{x}: U \subset \mathbb{R}^2 \to S$ in p, the function $f \circ \mathbf{x}: U \to \mathbb{R}$ is differentiable. In particular, the following are differentiable functions:

- 1. The *height function* relative to a unit vector $v \in \mathbb{R}^3$, $h: S \to \mathbb{R}$, given by $h(p) = p \cdot v$, $p \in S$, where the dot denotes the usual inner product in \mathbb{R}^3 . h(p) is the heigh of $p \in S$ relative to a plane normal to v and passing through the origin of \mathbb{R}^3 .
- 2. The square of the distance from a fixed point $p_0 \in \mathbb{R}^3$, $f(p) = |p p_0|^2$, $p \in S$. The need for taking the square comes from the fact that the distance $|p p_0|$ is not differentiable at $p = p_0$.

Differentiable Functions Between Surfaces

The definition of differentiability can be easily extended to mappings between surfaces. A continuous map $\varphi: V_1 \subset S_1 \to S_2$ of an open set V_1 of a regular surface S_1 to a regular surface S_2 is said to be differentiable at $p \in V$ if, given parametrizations

$$\mathbf{x}_1: U_1 \subset \mathbb{R}^2 \to S_1, \quad \mathbf{x}_2: U_2 \subset \mathbb{R}^2 \to S_2,$$

with $p \in \mathbf{x}_1(U)$ and $\varphi(\mathbf{x}_1(U_1)) \subset \mathbf{x}_2(U_2)$, the map

$$\mathbf{x}_2^{-1} \circ \varphi \circ \mathbf{x}_1 : U_1 \to U_2$$

is differentiable at $q = \mathbf{x}_1^{-1}(p)$.

Differentiable Functions Between Surfaces

The definition of differentiability can be easily extended to mappings between surfaces. A continuous map $\varphi: V_1 \subset S_1 \to S_2$ of an open set V_1 of a regular surface S_1 to a regular surface S_2 is said to be differentiable at $p \in V$ if, given parametrizations

$$\mathbf{x}_1: U_1 \subset \mathbb{R}^2 \to S_1, \quad \mathbf{x}_2: U_2 \subset \mathbb{R}^2 \to S_2,$$

with $p \in \mathbf{x}_1(U)$ and $\varphi(\mathbf{x}_1(U_1)) \subset \mathbf{x}_2(U_2)$, the map

$$\mathbf{x}_2^{-1} \circ \varphi \circ \mathbf{x}_1 : U_1 \to U_2$$

is differentiable at $q = \mathbf{x}_1^{-1}(p)$.

In other words, φ is differentiable if when expressed in local coordinates as $\varphi(u_1, v_1) = (\varphi_1(u_1, v_1), \varphi_2(u_1, v_1))$, the functions φ_1 and φ_2 have continuous partial derivatives of all orders.

Remark

The proof of Proposition (*) makes essential use of the fact that the inverse of a parametrization is continuous. Since we need (*) to be able to define differentiable functions on surfaces (a vital concept), we cannot dispose of this condition in the definition of a regular surface.

Remark

The proof of Proposition (*) makes essential use of the fact that the inverse of a parametrization is continuous. Since we need (*) to be able to define differentiable functions on surfaces (a vital concept), we cannot dispose of this condition in the definition of a regular surface.

Fact (Very Useful Fact)

U and $\mathbf{x}(U)$ are diffeomorphic (i.e., every regular surface is locally diffeomorphic to a plane) and justifies the identification made above. This is equivalent to:

Remark

The proof of Proposition (*) makes essential use of the fact that the inverse of a parametrization is continuous. Since we need (*) to be able to define differentiable functions on surfaces (a vital concept), we cannot dispose of this condition in the definition of a regular surface.

Fact (Very Useful Fact)

U and $\mathbf{x}(U)$ are diffeomorphic (i.e., every regular surface is locally diffeomorphic to a plane) and justifies the identification made above. This is equivalent to:

Fact

If $\mathbf{x}:U\subset\mathbb{R}^2\to S$ is a parametrization, $\mathbf{x}^{-1}:\mathbf{x}(U)\to\mathbb{R}^2$ is differentiable.

Remark

The proof of Proposition (*) makes essential use of the fact that the inverse of a parametrization is continuous. Since we need (*) to be able to define differentiable functions on surfaces (a vital concept), we cannot dispose of this condition in the definition of a regular surface.

Fact (Very Useful Fact)

U and $\mathbf{x}(U)$ are diffeomorphic (i.e., every regular surface is locally diffeomorphic to a plane) and justifies the identification made above. This is equivalent to:

Fact

If $\mathbf{x}:U\subset\mathbb{R}^2\to S$ is a parametrization, $\mathbf{x}^{-1}:\mathbf{x}(U)\to\mathbb{R}^2$ is differentiable.

Remark

Proposition (*) implies that a parametrization $\mathbf{x}: U \subset \mathbb{R}^2 \to S$ is a diffeomorphism of U onto $\mathbf{x}(U)$. Actually, we can now characterize the regular surfaces as those subsets $S \subset \mathbb{R}^3$ which are locally diffeomorphic to \mathbb{R}^2 ; that is, for each point $p \in S$, there exists a neighborhood V of p in S, an open set $U \subset \mathbb{R}^2$, and a map $\mathbf{x}: U \to V$, which is a diffeomorphism.

Example

Let S_1 and S_2 be regular surfaces. Assume that $S_1 \subset V \subset \mathbb{R}^3$, where V is an open set of \mathbb{R}^3 , and that $\varphi: V \to \mathbb{R}^3$ is a differentiable map such that $\varphi(S_1) \subset S_2$. Then the restriction $\varphi(S_1) \subset S_2$ is a differentiable map.

Example

Let S_1 and S_2 be regular surfaces. Assume that $S_1 \subset V \subset \mathbb{R}^3$, where V is an open set of \mathbb{R}^3 , and that $\varphi: V \to \mathbb{R}^3$ is a differentiable map such that $\varphi(S_1) \subset S_2$. Then the restriction $\varphi(S_1) \subset S_2$ is a differentiable map.

The following are particular cases of this general example:

Example

Let S_1 and S_2 be regular surfaces. Assume that $S_1 \subset V \subset \mathbb{R}^3$, where V is an open set of \mathbb{R}^3 , and that $\varphi: V \to \mathbb{R}^3$ is a differentiable map such that $\varphi(S_1) \subset S_2$. Then the restriction $\varphi(S_1) \subset S_2$ is a differentiable map.

The following are particular cases of this general example:

1. Let S be symmetric relative to the xy plane; that is, if $(x,y,z) \in S$, then also $(x,y,-z) \in S$. Then the map $\sigma: S \to S$, which takes $p \in S$ into its symmetrical point, is differentiable, since it is the restriction to S of $\sigma: \mathbb{R}^3 \to \mathbb{R}^3$, $\sigma(x,y,z) = (x,y,-z)$. This, of course, generalizes to surfaces symmetric relative to any plane of \mathbb{R}^3 .

Example

Let S_1 and S_2 be regular surfaces. Assume that $S_1 \subset V \subset \mathbb{R}^3$, where V is an open set of \mathbb{R}^3 , and that $\varphi: V \to \mathbb{R}^3$ is a differentiable map such that $\varphi(S_1) \subset S_2$. Then the restriction $\varphi(S_1) \subset S_2$ is a differentiable map.

The following are particular cases of this general example:

- 1. Let S be symmetric relative to the xy plane; that is, if $(x,y,z) \in S$, then also $(x,y,-z) \in S$. Then the map $\sigma: S \to S$, which takes $p \in S$ into its symmetrical point, is differentiable, since it is the restriction to S of $\sigma: \mathbb{R}^3 \to \mathbb{R}^3$, $\sigma(x,y,z) = (x,y,-z)$. This, of course, generalizes to surfaces symmetric relative to any plane of \mathbb{R}^3 .
- 2. Let $R_{z,\theta}: \mathbb{R}^3 \to \mathbb{R}^3$ be the rotation of angle θ about the z axis, and let $S \subset \mathbb{R}^3$ be a regular surface invariant by this rotation; i.e., if $p \in S$, $R_{z,\theta}(p) \in S$. Then the restriction $R_{z,\theta}: S \to S$ is a differentiable map.

Diffeomorphisms

Definition

▶ The natural notion of equivalence associated with differentiability is the diffeomorphism.

Diffeomorphisms

Definition

- ▶ The natural notion of equivalence associated with differentiability is the diffeomorphism.
- ▶ Two regular surfaces S_1 and S_2 are diffeomorphic if there exists a differentiable map $\varphi: S_1 \to S_2$ with a differentiable inverse $\varphi^{-1}: S_2 \to S_1$. Such a φ is called a *diffeomorphism* from S_1 to S_2 .

Diffeomorphisms

Definition

- ► The natural notion of equivalence associated with differentiability is the diffeomorphism.
- Two regular surfaces S_1 and S_2 are diffeomorphic if there exists a differentiable map $\varphi: S_1 \to S_2$ with a differentiable inverse $\varphi^{-1}: S_2 \to S_1$. Such a φ is called a *diffeomorphism* from S_1 to S_2 .
- ▶ A mapping $\varphi: U \subset S_1 \to S_2$ is a local diffeomorphism at $p \in U$ if there exists a neighborhood $V \subset U$ of p such that φ restricted to V is a diffeomorphism onto an open set $\varphi(V) \subset S_2$.

Example

Show that the sphere

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

and the ellipsoid

$$E = \left\{ (x, y, z) \in \mathbb{R}^3 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \right\}$$

are diffeomorphic.

◆□▶◆雹▶◆豊▶◆豊→ 豊 か900